Sediment Basin Design Basics w/ Surface Dewatering Devices

Sediment Removal

• Gravity; Stokes Law $V_s = \frac{1}{100}$

$$V_{s} = \frac{1}{18} \left[\frac{d^{2}g}{v} (SG - 1) \right]$$

- Particle diameter.
- Liquid viscosity = f(temperature).
- Particle density = $2.65 \text{ g/cc} (165 \text{ #/ft}^3)$
- Assumptions:
 - Water velocity = Zero (0); quiescent
 - Water temperature = 68°F
 - Laminar flow; Reynolds No. < 0.5

Impact of Control Features

- Washed aggregate. Helps a little (2%)
- Permanent pool. Helps 5 to 12%
- · Dewatering control devices
 - Perforated risers. Okay; not desired
 - Skimmers. Great Improvement; 10%
 - Auxiliary spillways. Better than no skimmer +6%
- Basin lining. Reduces re-suspension, Good
- PAM to remove clays. Great

Impact of Control Features

- Geotextiles
 - To filter sediment. Not very effective.
 - -As porous baffles. PorousJute/Coir w/ PAM & skimmer;Very Good
- Dewatering time. Longer is better.
- Delaying the dewatering process. Very good.
- Infiltrating the captured water. Great if soils permit.

Structure Sizing

- Criteria:
 - Minimum Volume:
 - 2 yr, 24 hr storm for drainage area (EPA 2012 CGP) or
 - 3,600 ft³/ac in drainage area (EPA)
- · Criteria in Some States:
 - Minimum Volume Area
 - 1,800 ft³/disturbed ac
 - Minimum Surface Area
 - + 435 Q_{10} or Q $_{25}$ (Rock or Perforated Riser)
 - 325 Q₁₀ or Q₂₅ (Surface Outlet or Flashboard Riser)

Module 4: Sed	l Basin	Design	Basics
---------------	---------	--------	---------------

Sizing Example

- Determine the minimum volume and surface area for a Temporary Sediment Trap serving a 1.2-acre road construction site with a 2 acre watershed with a $Q_{10}=7~{\rm cfs.}$
- Solution:
 - Minimum Volume = 3600(2) = 7200 ft³
 - Minimum Surface Area = $435(7) = 3045 \text{ ft}^2$

Rock Outlet

• When sediment laden water gets to the rock (porous) outlet, sediment remains in suspension.

Perforated Riser

• Will capture 80% of inflow fine sediment when water is held for 24 hours.

Skimmer

- Will capture 90% of fine (silts & clay) sediment when water is held for 24 hours.
- Surface Skimmer

Alternate Skimmers

Orifice Equation (cfs)

$$Q = CA\sqrt{2gH}$$

- Perforated Riser & Skimmer are controlled by small orifices.
 - C = coefficient; 0.6
 - A = area of orifice, ft²
 - $g = 32.2 \text{ ft/sec}^2 \text{ or } 9.81 \text{ m/sec}^2$
 - H = driving head, ft
 - $Q = flow rate, ft^3/sec, cfs$

Orifice Equation (gpm)

• Alternate form (gpm):

$$Q = 12D^2 \sqrt{H}$$

- Where D = diameter, inches
- H = head, ft
- Last example: D = 0.75 in, H = 1.5 ft

$$Q=12D^2\sqrt{H}=12(0.75)^2\sqrt{1.5}=8.1gpm$$

Orifice Equation Example

- A skimmer has a 2-in orifice and a head of 0.25 ft. What is the skimmer's discharge rate?
- Solution: D = 2 in; H = 0.25 ft

$$Q = 12D^2\sqrt{H} = 12(2)^2\sqrt{0.25} = 24gpm$$

Orifice Equation (ft³/d)

• Alternate form (ft³/d):

$$Q = 2310D^2\sqrt{H}$$

- Where D = diameter, inches
- H = head, ft
- Last example: D = 2 in, H = 0.25 ft

$$Q = 2310D^2\sqrt{H} = 2310(2)^2\sqrt{0.25} = 4620 \, ft^3 \, / \, d$$

Surface Skimmer Sizing

- Determine the desired outflow rate, Q (ft³/d) based on:
 - Volume of the basin, V in ft³
 - Desired dewatering time, t_d in days.

$$Q = \frac{V}{t_d}$$

• Example: Dewater 21,000 ft³ in 3 days.

$$Q = \frac{V}{t_d} = \frac{21000 \, ft^3}{3 \, days} =$$

Select skimmer based on desired flow rate from Table 4-1

	Skimmer Diameter (in)	Max. Outflow Rate (ft ³ /d)	Driving Head (ft)
Ī	1.5	1,728	0.125
ſ	2.0	3,283	0.167
I	2.5	6,234	0.208
L	3.0	9,774	0.250
I	4.0	20,109	0.333
ſ	5.0	32,832	0.333
	6.0	51,840	0.417
	8.0	97,978	0.500

Table 4-1

Skimmer Orifice Sizing

- Apply the orifice equation to size the orifice diameter & radius
 - If we use a 3-inch skimmer (H = 0.250 ft), we can size the orifice as:

$$D = \sqrt{\frac{Q}{2310 \sqrt{H}}} = \sqrt{\frac{7000}{2310 \sqrt{0.250}}} = 2.5 inches$$

$$r = D/2 = 2.5/2 = 1.3$$
inches

Flashboard Riser

 Works like a skimmer but with more labor.

Dewatering Via Infiltration

- · Can be effective into sandy soils.
- Compute the dewatering time knowing:
 - The soil's infiltration rate (permeability)
 - Depth of water in basin

$$T_d = \frac{water_depth(inches)}{Infiltration_rate(in/hr)} = \frac{D}{I}(hours)$$

Infiltration Rate

- Equals the soil's permeability
 - Given by NRCS in ranges; ex. 0.6 to 2.0 in/hr.
- Use permeability from slowest permeable soil horizon; usually B or C horizon.
- Use the lower value.
- That's the lowest value from slowest layer.

Dewatering Time

• Example: $10,000 \ ft^3$ basin has a design depth of 1.5 feet. Soil has I = 0.6 in/hr.

$$T_{d} = \frac{D(in)}{I(in/hr)} = \frac{1.5\,ft}{0.6in/hr} x \frac{12in}{1\,ft} =$$

Emergency Spillway

Emergency Spillway						
	Drainage Area (acres)	Minimum Emergency Spillway Width or Broad Crested Weir Length (ft)				
	1	4.0				
	2	6.0				
	3	8.0				
	4	10.0				
	5	12.0				

Weir Equation

• Flow from an emergency spillway or a flashboard riser is controlled by the weir equation.

$$Q = 2.5LH^{1.5}$$

- Where:
 - -L = width of the weir, ft
 - H = the driving head (1 ft max), ft
 - Q = flow rate, cfs

Weir Equation Example

• How wide should an emergency spillway be to carry $Q_{10}=20$ cfs with a maximum head of 0.5 ft.

Sediment Control BMPs

- Coir Fiber Baffles
- · Rock Sediment Dams
- Skimmer Basin
- Tiered Skimmer Basin
- Riser Basin
- Infiltration Basin

Design Considerations

- · Project phasing
- Scheduling of construction activities
- · Cost-benefit issues
- · Overall costs
- · Equipment access
- Constructability
- Seasonality

Stone Sizes

	Min. (inches)	Median (inches)	Max. (inches)
Sediment Control Stone (washed, no fines) No.5/No. 57	~3/8	1/2-3/4	1.5
Structure StoneClass A	2	4	6
" "Class B	5	8	12
" "Class I	5	10	17
" "Class II	9	14	23

Coir Fiber (Coconut) Baffles

- Purpose: Increase sediment trapping efficiency by spreading water out over width of basin
- · Materials:
 - Coir Matting (6.5 ft width, 700 g/m²)
 - Metal t-posts
 - 9 gauge wire (hi-tensile fencing wire)
 - UV coated plastic zip ties
 - 12 inch metal landscape staples

Temporary Rock Sediment Dam-Type A

- Large rock dam with weir outlet
- Location: site perimeter
- Drainage area < 10ac
- Surf. Area: 435Q₁₀ or Q₂₅
- Volume: 3600ft³/ac
- Class I structure stoneSediment control stone
- Sediment control stone on inlet face
- Earthen walls built above grade
- L:W ratio range 2:1-5:1

		A . I	D '	B '	D '
vioduie	4:	Sea	Basin	Design	Basics

PROFILE VIEW - TYPE A

Temp. Rock Sediment Dam - Type B

- · Small rock dam with weir outlet
- · Location: site perimeter
- Drainage area < 5ac
- Surf. Area: 435Q₁₀ or Q₂₅
- Volume: 3600ft3/ac

- Class B structure stone
- Sediment control stone face
- · 3 coir baffles
- Earthen walls built above grade
- L:W ratio range 2:1-5:1

Skimmer Basin w/ Baffles

- · Rectangular basin
- 3 coir baffles
- Location: site perimeter
- Drainage area < 10ac
- Surf. Area: 325Q₁₀ or Q₂₅
- Volume: 1800 ft³/ac
 Surface outlet devices
- Surface Skimmer
 - Weir
- Earthen walls (above grade)
- L:W ratio range 3:1-5:1
- Drawdown in 2-3 days
- (top 2 ft only)
- Max depth to weir, 3 ft

Riser Basin

- Rectangular basinLocation: site perimeter
- Drainage area < 100ac
- Surf. Area: 435Q₁₀ or Q₂₅
 Volume: 3600 ft³/ac
- · Earthen walls built above grade
- L:W ratio range 2:1-5:1

Outlet devices

- Perforated riser pipe w/ sed. control stone
- Overflow Spillway

Infiltration Basin w/ Baffles

Infiltration Basin w/ Baffles

- Rectangular basin3 coir baffles, equally spaced
- Location: site perimeter
- · Requires highly porous soils--sand
- Drainage area < 10ac
 Surf. Area: 325Q₁₀ or Q₂₅
 Volume: 1800 ft³/ac
- Outlet devices
 - Infiltration
 - Weir (emergency spillway)
- Dug into ground
- L:W ratio range 3:1-5:1

Summary					
Sediment Basin Type	Max. Drainage Area (acres)	Minimum Surface Area (ft² per cfs of Q ₁₀ peak inflow)	Minimum Volume (ft³ per acre of drainage area)	Outlet Structure	Function
Riser Basin	100 (10 acre min.)	435	3,600	Non- perforated Riser w/ Skimmer	Removes Sand, Silt and Clay***
Skimmer Basin	10	325	3,600	Skimmer	Removes Sand, Silt and Clay***
Tiered Skimmer Basin	10	325	3,600	Skimmer	Removes Sand, Silt and Clay***
Rock Filter Dam	< 1	435	3,600	Riprap Dike	Removes Sand and Silt
Sed Basin Type II	< 3	325* (435**)	1,800* (3,600**)	N/A	Removes Sand and Silt

Summary								
	Alternative Sediment Storage BMPs							
	Ditch Grade	0 – 2%	2-3%	>3%				
	Alternate BMP to Design Upgrade of Sediment Basin	Wattles with PAM	Wattles with PAM alternating with Rock Check Dams	Rock Check Dams with a section of erosion control blanket on upstream side with PAM applied to top of the blanket at weir				

