Ground Covers and Vegetation

Ground Covers and Vegetation

- Erosion control
- Vegetation is the long term goal
- Ground cover provides protection until germination

Steps to get Vegetation started

- Seedbed preparation
- Pre-ground cover applications
- Ground cover

Seedbed Preparation

Grass emergence is the objective

- Smooth uneven areas
- Scarify to loosen soil to the following depths:
 - 5 inches on solid undisturbed earth
 - 3 inches on embankments or other disturbed areas where soil is loose

Applications

- Lime
- Fertilizer
- Seed
- · Ground cover

Lime

Why do we lime?

- · Acidic soils in OK
- Al toxicity growth limiting factor & restricts nutrient uptake

Application:

- · 4,000 lbs/ac
- Prefer incorporation into soil

Fertilizer

10-20-10

N-P-K

- Nitrogen
- Phosphorus
- Potassium

Must be incorporated into soil

GUARANTEED ANALYSIS
anutation
Intal Nitrogen Original Nitrogen
J.Ph. Americana
A. T. County restate (P.O.)
Available Phospirico
Soluble bather addenies
Beron (B)
Total Copper to Subskip Connect to Connect to
If 01.2 assus account assistant com-
Total Iron (Fel
0.02% Water Scrudes iron tran
Total Manganese (MA)
0.01% Water Soluble Manganese 1965
Melyhdanum (Me)
Total Zine (Zn)

Fertilizer Application Rates

- Establishment:
 - x lbs/acre of 10-20-10 or analysis and rate specified
- Fertilizer Topdressing

Seed

- Temporary or Permanent
- Riparian Mix

Temporary Seeding

- Warm season species in summer months
- Cool season species in remaining months
- Follow up w/temporary mulching or hydromulching

Temporary Seeding

- When work areas will not be active for more than 14 days
- · Prior to anticipated precipitation

Includes: $\operatorname{cut/fill}$ slopes, drainage ditches, sediment basins, road beds \dots

Temporary Seeding

Stage Seeding
• Establishment of vegetative cover on cut/fill slopes as grading progresses

Permanent Seeding

Perform as soon as possible after final grade is complete

Sodding

Follow specs for proper installation and establishment

Riparian or Native Seed Mixture

- Native grass seeding
- Big/Little Bluestem, Indiangrass, Switchgrass

Seeding Problems

- Inadequate seed germination
- · Poor seedbed preparation
- Wrong seed type
- Expired (old) seed

- Maintenance
 Repair areas of damage or failure of grass stand establishment
- Mowing
- Maintain all measures until a permanent vegetative cover is established
- Supplemental Seeding

 No seed bed preparation may be required
 No fertilizer or limestone may be required
- Repair Seeding

 Seed bed preparation generally required

 Fertilizer and limestone generally required

Types of Ground Cover • Straw Mulch

- Erosion Control **Blankets**
- Permanent Soil (Turf)

Straw Mulch

- 2 tons/ac (85% coverage min.)
- · Slopes 2:1 or flatter
- · Spread uniformly over area
- · Sufficient amount to completely cover area

Straw Mulch

- · Partially shade ground
- · Reduce erosion
- · Conserve soil moisture
- · Allow air to circulate
- · Allow sunlight to penetrate
- · Within 24 hours of seeding

Binding Straw Mulch

- Sufficient amount of binding material to hold straw in place
- Uniform coverage

- Tackifier Options
 Diluted Emulsified AsphaltHydro mulch

Straw Mulch Problems

- · Not enough straw applied
- · Insufficient tack on mulch
- · Too steep or long of slope for straw mulch

Rolled Erosion Control Products - RECPs

- •Temporary Products- used on 2:1 slopes and steeper or where grass
- establishment is poor
- •Common types:
 - Excelsion
 - Coir (Coconut)

Why Use RECP's for Slopes?

Applications for slopes, channel liners, & shorelines

- Pros
 - Immediate erosion protection
 - More aggressive treatment
- Cons
 - Labor intensive
 - Added costs

Erosion Control Netting (ECN)

- · Planar woven natural fiber or extruded geosynthetic mesh
- · Used as a component in RECP's
- Used as a temporary degradable RECP to anchor loose fiber mulches

Open Weave Textiles (OWT)

- · Temporary degradable
- · Composed of processed natural or polymer yarns woven into a matrix

Erosion Control Blankets (ECB) • Temporary degradable processes natural or

- polymer fibers
- Mechanically, structurally, or chemically bound together to form a continuous matrix

Turf Reinforcement Mats (TRM)

- Composed of non-degradable synthetic fibers, filaments, nets, wire mesh, or other elements
- Processed into a permanent, three dimensional matrix

Other Considerations

- Hard Armor
 - Rip Rap
 - Kip Kap

- Gabions

SyntheticGeocells

Product Types

- Type 1 Ultra Short Term - 3 months
- Type 2 Short Term - 12 months
- Type 3 Extended Term 24 months
- Type 4 Long Term - 36 months
- Type 5 - permanent

Typical Slope Applications Table (CD-1 Temporary Eroston Control Blanket Classes and Applications Class Application 1.A Disperal for our or genetic-risingly date degree with gradient is to 5.1 and dispers for our or genetic-risingly date degree with gradient is 4.5 and disperse for our genetic-risingly date degree with gradient is 4.5 and disperse for our genetic-risingly date degree with gradient is 4.5 and disperse for our genetic-risingly date degree with gradient is 4.5 and disperse for our genetic-risingly date degree with gradient is 4.5 and disperse for our genetic-risingly date degree with gradient is 4.5 and disperse for the production of t

C – Factor Performance

- · Cover Factor "C"
- · Effectiveness Primary soil loss value
- Ability to minimize soil movement during rain events

Engineering Properties Table CG-5 Misman Physical Requirements For Foreign Control Relates Table CG-5 Misman Physical Requirements For Foreign Control Relates Table CG-5 Misman Physical Requirements For Foreign Control Relates Temporary Care Tempora

Riparian Buffer Considerations

Netless vs. Net

RECP Installation

- Site Preparation
 - Fine graded to a smooth profile
 - Free from clods, roots, stone, etc.
- Seeding
 - Select seed mix to the geological area
- Trenching
 - 6" deep by 6" wide anchor trench at top of slope
- Staples

ODOT Excelsior Matting Detail

Installed Costs

- Type 1 \$0.50 \$0.75/sy
- Type 2
 - Single Net \$1.50/syDouble Net \$1.75/sy
- Type 3 \$2.00 \$5.00/sy
- Type 4 \$6.00/sy
- Type 5 \$6.00 \$7.00/sy

Erosion Control Blankets

Erosion Control Blanket Problems

Compost Seeding

- Alternative to Seeding and Matting
 - Single application of compost material and seed on slopes
 - Nutrient and pH benefits

Compost Seeding

Case Studies

Different projects

- Site 1) application over Anchor Mat System on steep fill slope
- Site 2) application on eroding loamy cut slopes
- Site 3) application on eroding highly acidic clay soil cut slopes

Site 3

LOCATION: US 70 Johnston County, 20 mi. east RDU AREA: 4 Acres, 1" thick, 2:1 cut slopes COST: \$0.13/square foot, \$22,215/4 Acres SEASON: Winter (February)

Comparisons

- Compost Seeding
 - Ranges from \$0.13/square foot to \$0.22/square foot or \$5662/acre to \$9583/acre
- · Seeding and Matting
 - Ranges from \$0.17/square foot
 (\$0.03/square foot for seeding + \$0.14/square foot for matting) to \$0.22/square foot
 (\$0.03/ square foot for seeding + \$0.19/square foot for matting) or \$7405/acre to \$9583/acre

Benefits

- · Access to slope
 - Large truck and hose operation can make application to steep slopes easier than traditional seeding and matting effort
- Seed bed preparation
 - Not as critical because seed will germinate in compost material.
 Have gone with ~ 2 inches and seen success.
- · Long term benefit to soil
 - As compost leaches and decomposes it improves quality of existing soil and root zone of developing vegetation.
- Efficiency
 - Compost seeding provides seed and groundcover in one application

Drawbacks

- · Access to slope
 - Large truck and hose operation
- Seed bed preparation
 - Must be done as a separate operation
- Material Stockpile
 - Area needed is relative to area to be seeded. ~130 cubic yards for 1 acre coverage at 1 inch thickness

Why use HECP's

Hydraulic Erosion Control Products

- · Easy to Install
- · Better contact with soil
- Site prep savings

Characteristics

- Quality raw materials no germination inhibitors
- Long fiber lengths provide excellent erosion control and moisture absorption
- Thermally refined fibers provide greater moisture retention and ground coverage

HECP Types

- Hydraulic Mulch (HM)
- Stabilized Mulch Matrix (SMM)
- Bonded Fiber Matrix (BFM)
- Fiber Reinforced Matrix (FRM)

Hydraulic Mulch

- Contains defibrated paper, wood and/or natural fibers
- · May or may not contain tackifiers
- · Use on mild slopes

Stabilized Mulch Matrix

- Contains defibrated organic fibers with at least one of the following:
 - Soil flocculants
 - Cross linked hydro-colloidal polymers
 - Cross linked tackifiers
- Use on moderate slopes

Bonded Fiber Matrix

- Matrix containing organic defibrated fibers and cross-linked insoluble hydro-colloidal tackifiers
- Use on steep slopes

Fiber Reinforced Matrix

- Matrix containing organic defibrated fibers
- Cross linked insoluble hydro colloidal tackifiers and reinforcing natural or synthetic fibers
- Use on very steep slopes

Application Rates

Hydraulic Erosion Control						
Туре	Functional Longevity	Typical Application Rates (lbs/ac)	Typical Maximum Slope Gradient (H:V)	Maximum Uninterrupted Slope Length (ft)	Maximum C Factor	Minimum Vegetation Establishment
НМ	up to 3 mo.	2000-3000	≤ 3:1	25	0.5	150%
SMM	min. 3 mo.	2000-3500	≤ 2:1	50	0.15	200%
BFM	min. 6 mo.	2500-4000	≤ 1:1	75	0.1	300%
FRM	min. 12 mo.	3000-4500	≤ 0.5:1	100	0.02	400%

Mixing Techniques

- Mechanically Agitated Machines
 - Have paddles to mix slurry in tank
 - Can use a wide range of fiber mulch materials
- Jet Agitated Machines
 - Generally smaller machines that mix slurry with jets
 - May have difficulty pumping wood based fiber mulch materials

HECP Research

- · 30' x 200' area
- 20 plots
- · 5 treatments were applied
- · Each treatment replicated 4 times

Hydromulch Research

Plot Type	HM subsample weight (g)	DOT recommended rate (lb/ac)	Actual application rate (lb/ac)
100% wood	6.7	2000	3300
100% wood	8.4	2000	4100
100% wood	12.6	2000	6200
100% wood	11.8	2000	5800
BFM	17.3	3500	8500
BFM	7.7	3500	3700
BFM	10.1	3500	4900
BFM	11.2	3500	5500
70/30	6.8	2500	3300
70/30	6.5	2500	3200
70/30	9.3	2500	4500

	1 .		
]		
-			

Installed Costs

- Hydraulic Mulch -\$1500-\$3000/ac
- Stabilized Mulch Matrix -\$3000-\$4000/ac
- Bonded Fiber Matrix -\$4000-\$5000/ac
- Fiber Reinforced Matrix -\$5000-\$6000/ac

HECP Summary

- A right tool/product for every job!
- Select product based on engineering properties and site/slope warrants
- HECP's may serve as equivalent to some RECP's at a cost savings

Borrow and Waste Sites

- Stockpile topsoil for plating
- Initiate Stage S&M w/1 acre exposure
- Stabilize perimeter cuts and fills

Module 7	: Ground	Covers and	Vegetation

